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Abstract

A radiative transfer model for a linearly or nonlinearly anisotropic scattering medium is developed by the ray tracing

method. Under specular reflection, the radiative transfer coefficients of absorbing and anisotropic scattering layer with

opaque boundaries are deduced. Coupled radiative and conductive heat transfer is solved. The advantage of the method

is that it only needs to disperse spatial position, but not solid angle. A comparison of the present results with the

previous results shows that the radiative transfer coefficients of an anisotropic scattering slab are correct. The influence

of optical thickness, surface emissivity, spectrum characteristics, albedo, and boundary conditions on the transient

temperature and the heat flux distribution are analyzed. According to analyzed results of linear scattering and nonlinear

scattering, it is found that the ratio of two-dimensionless heat fluxes with two different scattering phase functions is a

monotone function of optical thickness. It can be used as a benchmark to verify the results.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Radiative heat transfer in a semi-transparent medium

with particles has played an important role in engi-

neering applications [1–4]. Without taking into account

scattering, the emission and absorption of radiant en-

ergy of particles often result in serious errors for total

heat transfer. In fact, the radiative properties of some

particles show strong characteristics of anisotropic

scattering, so that it is necessary to carry out a study on

radiative transfer in absorbing-emitting-anisotropic

scattering media [5–12].
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Busbridge and Orchard [5] gave the analytic solution

of radiative transfer in a one-dimensional anisotropic

scattering medium, Machali and Madkour [10], Mar-

uyama [11] studied the same problem by means of

Projection Method and REM2, respectively. Liu and

Dougherty [12] studied one-dimensional semi-infinite

anisotropic scattering medium by the principle of

superposition as well as Ambarzumian’s method. Yuen

and Wong [7], Tsai and Lin [8], Siewert [9] studied the

coupled radiative-conductive steady-state heat trans-

fer in an anisotropic scattering semi-transparent med-

ium.

Radiative heat transfer in the participating media

depends on spatial solid angle and wavelength besides

spatial location. The spectral properties are simulated by

the following three methods. (1) The surface and the

medium are assumed to be gray. (2) The average

equivalent weight parameter, e.g. Rosseland average
ed.
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Nomenclature

RTC radiative transfer coefficient

RTE radiative transfer equation

Ak;Ti

R
Dkk

Ib;kðTiÞdk=
R1
0

Ib;kðTiÞdk, fractional

spectral emissive power of spectral band Dkk
at nodal temperature Ti

C specific volume heat capacity, Jm�3 K�1

½F pðzÞ� radiative transfer functions (Eqs. (5)–(7))

h1, h2 convective heat transfer coefficient at sur-

faces of S1 and S2, respectively, Wm�2 K�1

H1, H2 convection–radiation parameter, H1 ¼ h1=
rT 3

rf and H2 ¼ h2=rT 3
rf , respectively

L thickness of slab, m

k thermal conductivity of media, Wm�1 K�1

NP k= 4rT 3
rfL

� �
, conduction–radiation parameter

NB total number of spectral bands

NM total number of control volumes of slab

nm;k spectral refractive index of slab

qr heat flux of radiation, Wm�2

Su, Sv boundary surfaces, S1 or S2, respectively
ðSuSvÞk , ðSuVjÞk , ðViVjÞk radiation transfer coefficients

of surface vs surface, surface vs volume, and

volume vs volume in nonscattering media

relative to the spectral band Dkk
½SuSv�k , ½SuVj�k , ½ViVj�k radiation transfer coefficient of

surface vs surface, surface vs volume, and

volume vs volume in isotropic or anisotropic

scattering media relative to the spectral

band Dkk
S1, S2 boundary surfaces (Fig. 1)

S�1, Sþ1 black surfaces representing the surround-

ings

T absolute temperature, K

Tg1, Tg2 gas temperatures for convection at X ¼ 0

and 1, K

Trf reference temperature, K

T0 uniform initial temperature, K

t physical time, s

t� dimensionless time, 4rT 3
rf=CL

� �
t

t�s steady-state dimensionless time

X dimensionless coordinate in direction across

layer, X ¼ x=L
x1;i normal distance of ray transfer between

both subscripts, m

z the normal distance of ray transfer, m

ak spectral absorption coefficient of slab, m�1

Dt, Dt� time interval and dimensionless time inter-

val, respectively

Dx spacing interval between two nodes, m

ek spectral emissivity of surface

f amount of the control-volume per optical

thickness, f ¼ NM=so
g 1� x
H dimensionless temperature, ðT � T0Þ=

ðTrf � T0Þ
hi, h incident, scattering included angle between

the ray and the x-axis
jk spectral extinction coefficient of slab, m�1

k wavelength, lm
qk spectral reflectivity of surface

r Stefan–Boltzmann constant ¼ 5.6696 · 10�8

Wm�2 K�4

rs;k spectral scattering coefficient of slab, m�1

so jL, optical thickness of slab
U scattering phase function

Ur
i radiative heat source of the control-volume i

xk rs;k=ðrs;k þ akÞ, spectral single-scattering

albedo of slab

Subscripts

a absorbed quotient in the overall radiative

heat transfer coefficient

ie; iw right and left interface of control volume i
(Fig. 1)

k relative to spectral band Dkk
s scattered quotient in the overall radiative

heat transfer coefficient

S1, S2 refer to the boundary surfaces S1 and S2,
respectively

1, 2 refer to the boundary surfaces S1 and S2,
respectively

�1, þ1 refer to the black surfaces S�1 and Sþ1,

respectively

Superscripts

1st, 2nd,. . . the first-order scattering, the second-or-

der scattering, . . ., respectively.
b, f , t incidence radiation from negative, positive

and both direction relative to the x-axis,
respectively, for RTC only

h, q backward scattering and forward scattering

relative to the incident direction, respec-

tively, for the radiative transfer functions

only

m, mþ 1 time step

p z, q, h
r refer to radiation

s specular reflection

z emitting or isotropic scattering
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absorbing coefficient is used to replace the spectra

selective radiative parameters. (3) The spectral band
model is used to simulate the spectral characteristics of

the medium and surface.
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This paper is a continuation of the authors’ previous

work [13–17]. Ref. [13] investigated coupled heat trans-

fer in single layer media without scattering; Ref. [14]

investigated combined heat transfer in single layer media

with isotropic scattering; Ref. [15] examined couple heat

transfer in two-layer media with isotropic scattering;

Refs. [16,17] examined combined heat transfer in three-

layer media with isotropic scattering. On the basis of

those papers, ray-tracing method is extended to the

radiative transfer through a linearly or nonlinearly

anisotropic scattering medium. The radiative transfer

coefficients (RTCs) of an anisotropic scattering medium

slab with two opaque boundaries are deduced under

specular reflection. The advantage of the method is that

it only needs to disperse spatial position, and the integral

over solid angle is calculated directly. Transient coupled

radiative and conductive heat transfer is solved by the

nodal analysis method in combination with the spectral

band model.
2. Discrete model of space zone

A semi-transparent slab, thickness is L, as shown in

Fig. 1. The slab is located between two black surfaces

S�1 and Sþ1, which indicate the environment of tem-

peratures T�1 and Tþ1, respectively. The slab is divided

into NM þ 2 nodes along its thickness and denoted by i.
Here, i ¼ 1 and i ¼ NM þ 2 represent surfaces S1 and S2,
respectively.

Considering transient coupled radiation and con-

duction, between the time intervals t and t þ Dt, the fully
implicit discrete energy equation of control volume i is
obtained as

CDx
T mþ1
i � T m

i

� �
Dt

¼
kmþ1
ie T mþ1

iþ1 � T mþ1
i

� �
þ kmþ1

iw T mþ1
i�1 � Tmþ1

i

� �
Dx

þ Ur;mþ1
i

ð1Þ
Fig. 1. Discrete model of space zone.
The extinction coefficient j, absorption coefficient a,
scattering coefficient rs, refractive index nm and surface

reflectivity q, which vary with the wavelength, are

approximately simplified in a series of rectangular

spectral band. The total number of spectral bands is NB
and subscript k indicates the kth region of the band

model. On the basis of the nodal analysis method [18],

the radiative source of control volume i can be expressed

as [13]:

Ur
i ¼ qrieðT Þ � qriwðT Þ ¼ qrieðT Þ � qrði�1ÞeðT Þ ð2Þ

When boundary surfaces S1 and S2 are opaque, the

radiative heat flux through the interface ‘ie’ between

the nodes i and iþ 1 can be expressed as:

qrie ¼ r
XNB
k¼1

n2m;k e2;k ½S2S1�skAk;TS2
T 4
S2

(
� e1;k ½S1S2�skAk;TS1

T 4
S1

þ
XNMþ1

j¼iþ1

Xi

l¼2

½VjVl�skAk;TjT
4
j

�
� ½VlVj�skAk;TlT

4
l

�

þ
Xi

j¼2

e2;k ½S2Vj�skAk;TS2
T 4
S2

�
� ½VjS2�skAk;Tj T

4
j

�

þ
XNMþ1

j¼iþ1

½VjS1�skAk;TjT
4
j

�
� e1;k ½S1Vj�skAk;TS1

T 4
S1

�)

26 i6NM þ 1 ð3aÞ

The radiative heat flux at boundary S1 is

qrS1 ¼ r
XNB
k¼1

n2m;k e2;k ½S2S1�skAk;TS2
T 4
S2

(
� e1;k ½S1S2�skAk;TS1

T 4
S1

þ
XNMþ1

j¼2

½VjS1�skAk;TjT
4
j

�
� e1;k ½S1Vj�skAk;TS1

T 4
S1

�)

ð3bÞ

The boundary condition at opaque boundary surfaces S1
is follows:

qrS1 þ 2k2ðT2 � TS1Þ=Dx ¼ r
XNB
k¼1

e1;kAk;TS1
T 4
S1

�
� Ak;TS�1 T

4
�1

�
þ h1 TS1

�
� Tg1

�
ð4Þ
3. Radiative transfer coefficients

The RTC of an element (surface or control volume) i
to an element j is defined as the quotient of the radiative

energy that is received by the element j in the transfer

process of the radiative energy emitted by element i. The
radiation transfer process in scattering medium can be

divided into two subprocesses [14]. The first subprocess

is emitting-attenuating-reflecting subprocess and the

RTCs are denoted by ðSiSjÞsk , ðSiVjÞ
s

k , ðViVjÞ
s

k . The second
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Fig. 3. Sketch of radiative transfer journey between two infinite

slabs.

4048 H.-P. Tan et al. / International Journal of Heat and Mass Transfer 47 (2004) 4045–4059
subprocess is a multiple absorbing-multiple scattering

subprocess and the RTCs are denoted by ½SiSj�sk , ½SiVj�
s

k ,

½ViVj�sk . For convenience, the subscript ‘k’ of the variables
denoting spectral properties and the superscript ‘s’ of the
variables denoting specular reflection are omitted in the

deductive process in the following text.

The first subprocess can be again divided into the

following four steps. (1) Considering the multiple

reflection of the surface. (2) The radiative transfer

function of the forward scattering and the backward

scattering. (3) Considering the incident direction. (4)

Considering the scattering direction. For emitting-

attenuating-reflecting subprocess, the incident direction

of the RTC ðVl2VjÞ is denoted by two superscripts. The

first superscript denotes the incident direction to control

volume l2 and the second denotes the incident direction

to control volume j.
The second subprocess considers the redistributing of

the energy quotient in a multiple absorbing-multiple

scattering process. The subscripts ‘a’ and ‘s’ of the RTCs

indicate the quotient of absorbing and scattering,

respectively.

3.1. Emitting-attenuating-reflecting subprocess

3.1.1. Considering the multiple reflection

ðViVjÞ is used as an example to consider multiple

reflection of a surface. There are four kinds of energy

transfer paths from the control volume i to the control

volume j.

(a) The energy directly reaches j from i and its geomet-

ric progression, i.e. energy travels from j to surface

S2, and after being reflected by S2, the energy reaches
surface S1, and then energy reaches j again (see Fig.

2a).

(b) Energy from i to S2 is reflected by S2, then reaches j
and its geometric progression (see Fig. 2b).

(c) Energy from i to S1 is reflected by S1, then reaches j
and its geometric progression (see Fig. 2c).
x

i jV V→ →→ 2i jV S V

1S 2Si j 1S 2Si j S

(a) (b)

Fig. 2. Sketch of four kinds of transf
(d) Energy from i to S1 is reflected by S1, reaches S2, is
reflected by S2 and arrives at j and its geometric pro-

gression (see Fig. 2d).

3.1.2. The forward and backward radiative transfer

functions

Considering the multi-reflection of the surface and

the absorption of the medium, the radiative transfer

function ½F zðzÞ� can be obtained by integral over incident

direction (see Figs. 2 and 3):

½F zðzÞ� ¼ 2

Z p=2

0

sin hi cos hi expð�jz= cos hiÞ
1� q1q2 expð�2so= cos hiÞ

dhi ð5Þ

where so ¼ jL is the optical thickness; variable z is the

normal transfer distance.

For a one-dimensional problem, the scattered energy

can be divided into forward scattering and backward

scattering direction with respect to the incident direc-

tion. Let Uqðh; hiÞ ð06 h6 p=2Þ denote the forward

scattering phase function and Uhðh; hiÞ (p6 h6 � p=2)
denote the backward scattering phase function.

According to Bouguer’s law and considering the

anisotropy of scattering, when radiant intensity taking a

trip with a normal displacement of z m after an infinite
→→ 1i jV S V 1 2i jV S S V

1 2Si j 1S 2Si j

→ → →

(c) (d)

er paths from the control i to j.
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process of the radiative transfer within media on whose

surfaces multiple reflection of thermal radiation occurs,

the forward and backward radiative transfer functions

can be obtained as follows:

½F qðzÞ�

¼ 2

Z p=2

0

sin hi cos hi expð�jz= cos hiÞ 1
p=2

R p=2
0

Uqðh; hiÞdh
1� q1q2 expð�2so= cos hiÞ

dhi

ð6Þ

½F hðzÞ�

¼ 2

Z p=2

0

sin hi cos hi expð�jz= cos hiÞ 1
p=2

R�p=2
p Uhðh; hiÞdh

1� q1q2 expð�2so= cos hiÞ
dhi

ð7Þ

Eqs. (6) and (7) denote radiant intensity transfer quo-

tients after the radiant intensity being extincted in the

infinite radiative transfer process.

When considering the energy conservation relations:

ðS1ViÞ ¼ ðS1SiÞ � ðS1Siþ1Þ ð8Þ

ðViVjÞ ¼ ðSiþ1SjÞ � ðSiSjÞ � ðSiþ1Sjþ1Þ þ ðSiSjþ1Þ ð9Þ

The radiative transfer coefficient relative to each transfer

path can be obtained:

GzðVi ! VjÞ ¼ F zðxiþ1;jÞ � F zðxiþ1;jþ1Þ
� F zðxi;jÞ þ F zðxi;jþ1Þ ð10aÞ

GqðVi ! VjÞ ¼ F qðxiþ1;jÞ � F qðxiþ1;jþ1Þ
� F qðxi;jÞ þ F qðxi;jþ1Þ ð10bÞ

GhðVi ! VjÞ ¼ F hðxiþ1;jÞ � F hðxiþ1;jþ1Þ
� F hðxi;jÞ þ F hðxi;jþ1Þ ð10cÞ

GpðVi ! S1 ! VjÞ ¼ F pðxi;1 þ x1;jÞ � F pðxi;1 þ x1;jþ1Þ
� F pðxiþ1;1 þ x1;jÞ þ F pðxiþ1;1 þ x1;jþ1Þ

ðp ¼ z; q; hÞ ð11Þ

GpðVi ! S2 ! VjÞ ¼ F pðxiþ1;2 þ x2;jþ1Þ � F pðxiþ1;2 þ x2;jÞ
� F pðxi;2 þ x2;jþ1Þ þ F pðxi;2 þ x2;jÞ

ðp ¼ z; q; hÞ ð12Þ
i 2( )i l

(b)(a)

1

2

3

4

1

2

2l

Fig. 4. Radiative transfer direction from the control
GpðVi ! S1 ! S2 ! VjÞ ¼ F pðxi;1 þ Lþ x2;jþ1Þ
� F pðxi;1 þ Lþ x2;jÞ
� F pðxiþ1;1 þ Lþ x2;jþ1Þ
þ F pðxiþ1;1 þ Lþ x2;jÞ

ðp ¼ z; q; hÞ ð13Þ
3.1.3. Incident direction

For storing the information of the incident direction,

the energy radiated into control volume is divided into

two parts. One comes from the positive direction of the

x-axis (forward direction), the RTC is denoted by

superscript ‘f ’ (cf. ‘1’, ‘2’ in Fig. 4). The other comes

from the negative direction of x-axis (backward direc-

tion), the RTC is denoted by superscript ‘b’, (cf. ‘3’, ‘4’
in Fig. 4). For example, ðViVl2Þ

f
is the fraction of emis-

sive power of control volume i, which is radiated into

control volume l2 from the positive direction.

(1) i < l2 (see Fig. 4a)

ðViVl2Þ
f ¼ GzðVi ! Vl2Þ þ q1G

zðVi ! S1 ! Vl2Þ
ð14aÞ

ðViVl2Þ
b ¼ q2G

zðVi ! S2 ! Vl2Þ
þ q1q2G

zðVi ! S1 ! S2 ! Vl2Þ ð14bÞ

(2) i ¼ l2 (see Fig. 4b)

ðViVl2Þ
f ¼ 0:25FV þ q1G

zðVi ! S1 ! Vl2Þ
þ q1q2G

zðVi ! S2 ! S1 ! Vl2Þ ð15aÞ

ðViVl2Þ
b ¼ 0:25FV þ q2G

zðVi ! S2 ! Vl2Þ
þ q1q2G

zðVi ! S1 ! S2 ! Vl2Þ ð15bÞ

Here FV ¼ 4jDx� 2½1� 2E3ðjDxÞ� is the direct ex-

change area of volume i vs volume i [19].
(3) i > l2 (see Fig. 4c)

ðViVl2Þ
f ¼ q1G

zðVi ! S1 ! Vl2Þ
þ q1q2G

zðVi ! S2 ! S1 ! Vl2Þ ð16aÞ
i

3

4

1

2

3

4

2l

(c)

volume i to l2. (a) i < l2, (b) i ¼ l2, (c) i > l2.
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ðViVl2Þ
b ¼ GzðVi ! Vl2Þ þ q2G

zðVi ! S2 ! Vl2Þ
ð16bÞ

The total power entering control volume from both

the directions is denoted by superscript ‘t’.

ðViVl2Þ
t ¼ ðViVl2Þ

f þ ðViVl2Þ
b

3.1.4. Scattering direction

The radiative energy scattered by control volume l2 is
divided into two parts as well. (a) Forward scattering

(relative to the incident direction) which is denoted by

superscript ‘q’ for the radiative transfer functions and ‘f ’
for RTC (see Fig. 5). (b) Backward scattering (relative to

the incident direction) which is denoted by superscript

‘h’ for the radiative transfer functions and ‘b’ for RTC

(see Fig. 5). In the following formulas, two superscripts

are used in RTC to denote direction of incident radia-

tion into two control-volumes, respectively. The first
q

h

q

hf b

q

q

h

h

2l j 2l j

q

h

h

f

j
2l

( )2j l

h

q
q

hf

( )2j l

q

h
h

q

b

q

h

q

q

j 2l

h b

   , positive incidence2l j<(a)    , negative incidence2l j<(b)

   , positive incidence2l j=(c)    , negative incidence2l j=(d)

   , positive incidence2l j>(e)    , negative incidence2l j>(f)

Fig. 5. Sketch of the transfer direction from control volume l2
scattered to control volume j.
superscript means the direction of incident radiation

into control volume l2 and the second one means the

direction of incident radiation into control volume j,
which is scattered by control volume l2 firstly. We use

the superscript ‘f ’ to denote the positively incident

direction and use the superscript ‘b’ to denote the neg-

atively incident direction relative to x-axis. If only con-

sidering the incident power into control volume l2,
the second superscript will be ‘t’, and

ðVl2VjÞ
ft ¼ ðVl2VjÞ

ff þ ðVl2VjÞ
fb

ðVl2VjÞ
bt ¼ ðVl2VjÞ

bf þ ðVl2VjÞ
bb

(1) l2 < j, for positive incidence (see Fig. 5a)

ðVl2VjÞ
ff ¼ GqðVl2 ! VjÞ þ q1G

hðVl2 ! S1 ! VjÞ
ð17aÞ

ðVl2VjÞ
fb ¼ q2G

qðVl2 ! S2 ! VjÞ
þ q1q2G

hðVl2 ! S1 ! S2 ! VjÞ ð17bÞ

For negative incidence (see Fig. 5b)

ðVl2VjÞ
bf ¼ GhðVl2 ! VjÞ þ q1G

qðVl2 ! S1 ! VjÞ
ð18aÞ

ðVl2VjÞ
bb ¼ q2G

hðVl2 ! S2 ! VjÞ
þ q1q2G

qðVl2 ! S1 ! S2 ! VjÞ ð18bÞ

(2) l2 ¼ j, for positive incidence (see Fig. 5c)

ðVl2VjÞ
ff ¼ 0:25FV þ q1G

hðVl2 ! S1 ! VjÞ
þ q1q2G

qðVl2 ! S2 ! S1 ! VjÞ ð19aÞ

ðVl2VjÞ
fb ¼ 0:25FV þ q2G

qðVl2 ! S2 ! VjÞ
þ q1q2G

hðVl2 ! S1 ! S2 ! VjÞ ð19bÞ

For negative incidence (see Fig. 5d)

ðVl2VjÞ
bf ¼ 0:25FV þ q1G

qðVl2 ! S1 ! VjÞ
þ q1q2G

hðVl2 ! S2 ! S1 ! VjÞ ð20aÞ

ðVl2VjÞ
bb ¼ 0:25FV þ q2G

hðVl2 ! S2 ! VjÞ
þ q1q2G

qðVl2 ! S1 ! S2 ! VjÞ ð20bÞ

(3) l2 > j, for positive incidence (see Fig. 5e)

ðVl2VjÞ
ff ¼ q1G

hðVl2 ! S1 ! VjÞ
þ q1q2G

qðVl2 ! S2 ! S1 ! VjÞ ð21aÞ

ðVl2VjÞ
fb ¼ GhðVl2 ! VjÞ þ q2G

qðVl2 ! S2 ! VjÞ
ð21bÞ

For negative incidence (see Fig. 5f)

ðVl2VjÞ
bf ¼ q1G

qðVl2 ! S1 ! VjÞ

þ q1q2G
hðVl2 ! S2 ! S1 ! VjÞ ð22aÞ
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ðVl2VjÞ
bb ¼ GqðVl2 ! VjÞ þ q2G

hðVl2 ! S2 ! VjÞ
ð22bÞ
3.2. Multiple absorbing-multiple scattering subprocess

The multiple absorbing and scattering in medium are

traced until that the transferring energy is reduced

to zero. First of all, the RTC must be normalized as

follows:

ðViVjÞ�ftk ¼ ðViVjÞftk =ð4jkDxÞ

ðViVjÞ�btk ¼ ðViVjÞbtk =ð4jkDxÞ i; j ¼ 2–NM þ 1

ðViSuÞ�fk ¼ ðViSuÞfk=ð4jkDxÞ

ðViSuÞ�bk ¼ ðViSuÞbk=ð4jkDxÞ i ¼ 2–NM þ 1

ðSuViÞ�k ¼ ðSuViÞk=eu;k i ¼ 2–NM þ 1

ðSuSvÞ�k ¼ ðSuSvÞk=eu;k

where Su, Sv ¼ S1 or S2; superscript ‘*’ indicates the

normalized parameter.

The detailed deductive process of RTC ½ViVj� is

exemplified as follows. For convenience, the two func-

tions are defined as following:

H Vlnþ1
Vln

� ��ft ¼ XNMþ1

ln¼2

Vlnþ1
Vln

� ��ff
H VlnVln�1

� ��fth

þ Vlnþ1
Vln

� ��fb
H VlnVln�1

� ��bti
nP 3

ð23aÞ

H Vlnþ1
Vln

� ��bt ¼ XNMþ1

ln¼2

Vlnþ1
Vln

� ��bf
H VlnVln�1

� ��fth

þ Vlnþ1
Vln

� ��bb
H VlnVln�1

� ��bti
nP 3

ð23bÞ

If n ¼ 2 and the RTC is for the control volume to the

control volume, i.e. ðViVjÞ�nth, or the surface to the

control volume, i.e. ðSuVjÞ�nth, then

HðVl3Vl2Þ
�ft ¼

XNMþ1

l2¼2

ðVl3Vl2Þ
�ff ðVl2VjÞ

�ft
h

þ ðVl3Vl2Þ
�fbðVl2VjÞ

�bt
i

ð24aÞ

HðVl3Vl2Þ
�bt ¼

XNMþ1

l2¼2

ðVl3Vl2Þ
�bf ðVl2VjÞ

�ft
h

þ ðVl3Vl2Þ
�bbðVl2VjÞ

�bt
i

ð24bÞ
If n ¼ 2 and the RTC is for the control volume to the

surface, i.e. ðViSvÞ�nth, or the surface to the surface,

i.e. ðSuSvÞ�nth, then

HðVl3Vl2Þ
�ft ¼

XNMþ1

l2¼2

ðVl3Vl2Þ
�ff ðVl2SvÞ

�ft
h

þ ðVl3Vl2Þ
�fbðVl2SvÞ

�bt
i

ð25aÞ

HðVl3Vl2Þ
�bt ¼

XNMþ1

l2¼2

ðVl3Vl2Þ
�bf ðVl2SvÞ

�ft
h

þ ðVl3Vl2Þ
�bbðVl2SvÞ

�bt
i

ð25bÞ

(1) After the first-order scattering

½ViVj��1sta ¼ ðViVjÞ�tg ½ViVj��1sts ¼ ðViVjÞ�tx

(2) After the second-order scattering

½ViVj��2nda ¼ ½ViVj��1sta þ
XNMþ1

l2¼2

ðViVl2Þ
�f ðVl2VjÞ

�ft
h

þ ðViVl2Þ
�bðVl2VjÞ

�bt
i
xg

½ViVj��2nds ¼
XNMþ1

l2¼2

ðViVl2Þ
�f ðVl2VjÞ

�ft
h

þ ðViVl2Þ
�bðVl2VjÞ

�bt
i
x2

(3) After the third-order scattering

½ViVj��3rda ¼ ½ViVj��2nda

þ
XNMþ1

l3¼2

ðViVl3Þ
�f XNMþ1

l2¼2

ðVl3Vl2 Þ
�ff ðVl2VjÞ

�ft
h(

þ ðVl3Vl2Þ
�fbðVl2VjÞ

�bt
i

þ ðViVl3Þ
�b XNMþ1

l2¼2

ðVl3Vl2Þ
�bf ðVl2VjÞ

�ft
h

þ ðVl3Vl2Þ
�bbðVl2VjÞ

�bt
i)

x2g

¼ ½ViVj��2nda þ
XNMþ1

l3¼2

ðViVl3Þ
�f HðVl3Vl2Þ

�ft
n

þ ðViVl3Þ
�bHðVl3Vl2Þ

�bt
o
x2g

½ViVj��3rds ¼
XNMþ1

l3¼2

ðViVl3Þ
�f HðVl3Vl2Þ

�ft
n

þ ðViVl3Þ
�bHðVl3Vl2Þ

�bt
o
x3

(4) After the ðnþ 1Þth-order scattering, when

Max
PNMþ1

j¼2 ½ViVj��ðnþ1Þth
s < EPS0, the redistribution

of energy is finished:
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½ViVj��ðnþ1Þth
a ¼ ½ViVj��ntha

þ
XNMþ1

lnþ1¼2

ViVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ ViVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xng ð26Þ

½ViVj��ðnþ1Þth
s ¼

XNMþ1

lnþ1¼2

ViVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ ViVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xnþ1 ð27Þ

The other RTCs are given by analogy:

½SuVj��ðnþ1Þth
a ¼ ½SuVj��ntha

þ
XNMþ1

lnþ1¼2

SuVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ SuVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xng ð28Þ

½SuVj��ðnþ1Þth
s ¼

XNMþ1

lnþ1¼2

SuVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ SuVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xnþ1 ð29Þ

½ViSv��ðnþ1Þth
a ¼ ½ViSv��ntha

þ
XNMþ1

lnþ1¼2

ViVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ ViVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xn ð30Þ

½SuSv��ðnþ1Þth
a ¼ ½SuSv��ntha

þ
XNMþ1

lnþ1¼2

SuVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ SuVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xn ð31Þ

After inverse operation and considering E ¼ 4jkgkDx,
the RTC for anisotropic scattering is obtained:

½ViVj�k ¼ 4jkgkDx½ViVj�
�ðnþ1Þth
a;k

½SuVj�k ¼ eu;k ½SuVj��ðnþ1Þth
a;k

½ViSv�k ¼ 4jkgkDx½ViSv�
�ðnþ1Þth
a;k

½SuSv�k ¼ eu;k ½SuSv��ðnþ1Þth
a;k

ð32Þ
qMaruyama ¼ 1� ~qMaruyamað0Þ ð36bÞ
4. Numerical method and its verification

4.1. Summation relationship of the RTC

The summation relationship of the RTC in aniso-

tropic scattering medium can be expressed as:
XNMþ1

j¼2

½ViVj�k þ ½ViS1�k þ ½ViS2�k ¼ 4jkgkDx i ¼ 2–NM þ 1

ð33aÞ

½S1S1�k þ
XNMþ1

j¼2

½S1Vi �k þ ½S1S2�k ¼ e1 ð33bÞ

½S2S1�k þ
XNMþ1

j¼2

½S2Vi �k þ ½S2S2�k ¼ e2 ð33cÞ
4.2. Numerical method

Eqs. (6) and (7) are integrated by an adaptive method

based on a 30-point Gaussian integration scheme, the

integral control precision EPS3 ¼ 10�9.

Because the radiative source term and the boundary

condition have nonlinear relationship with temperature,

both of them must be linearized firstly [20], the lineari-

zation of source term is obtained as

Ur;m;nþ1
i ¼ Ur;m;n

i þ dUr
i=dTi

� �m;n
T nþ1
i

�
� T n

i

�m ð34Þ

where superscript ‘nþ 1’ indicates the (nþ 1)th intera-

tion in mth time-step. The TDMA (TriDiagonal Matrix

Algorithm) method is applied to solve the linear system

of equations, and the control precision Max T m;nþ1
i �

��
T m;n
i j6EPS1 ¼ 0:001 K.

4.3. The result of linear anisotropic scattering

Busbridge and Orchard [5] and Maruyama [11]

studied the radiative transfer in a pure scattering, gray

slab for the case x ¼ 1, NB ¼ 1, nm ¼ 1. Boundary sur-

faces are black and the temperatures are specified as

TS1 ¼ Trf ¼ 1000 K, TS2 ¼ 0. The linear anisotropic

scattering phase functions are considered as U1ðh; hiÞ ¼
1þ 0:5 cos h cos hi and U2ðh; hiÞ ¼ 1þ cos h cos hi,
respectively. Note Eqs. (3b), (28), (32), since g ¼ 0,

NB ¼ 1, nm ¼ 1, e1 ¼ e2 ¼ 1 and TS2 ¼ 0, the radiative

heat flux density at boundary S1 can be rewritten as:

qrS1

��� ��� ¼ r
n��� � ½S1S2�sT 4

S1

o��� ð35Þ

The dimensionless radiative flux ~qrMaruyamaðsÞ and the

dimensionless reflected radiative flux qr
Maruyama are given

as follows (subscript ‘Maruyama’ indicates the para-

meters are defined according to Maruyama).

~qrMaruyamað0Þ ¼ qrð0Þ=ðrT 4
rfÞ ¼ jqrS1 j= rT 4

rf

� �
¼ ½S1S2�s

ð36aÞ

r r
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Since the heat conduction was neglected in Refs. [5,11],

therefore, let k ¼ 1� 10�14 Wm�1 K�1 in this paper.

Using EPS0 ¼ 1� 10�9 and f ¼ 40–80, the result of

comparison with Refs. [5,11] is shown in Table 1.

Machali and Madkour [10] studied the radiative heat

transfer in an absorbing and linear-anisotropic pure

scattering gray slab for combined specular and diffuse

reflection boundaries by the projection method for the

case x ¼ 1 and nm ¼ 1. Boundary surfaces are opaque,

gray, and the boundary temperatures are specified as

TS1 ¼ Trf ¼ 2TS2 . The dimensionless radiative heat flux is

given as follows [subscript ‘Machali’ indicates that the

parameter is defined according to Machali].

~qrMachali ¼ qr= 2e1rT 4
rf

� �
¼ jqrS1 j=½2e1rT

4
S1
�

¼ jf½S2S1�sT 4
S2
� ½S1S2�sT 4

S1
gj=½2T 4

S1
� ð37Þ

Table 2 shows the comparison of present result with

those of Ref. [10] for the case k ¼ 1� 10�14 Wm�1 K�1,

EPS0 ¼ 1� 10�9, Trf ¼ TS1 ¼ 1500 K, f ¼ 100. It is

shown that the results of this paper are consistent with

those in Ref. [10] when so 6 1. But when so P 2 and

U2ðh; hiÞ ¼ 1þ cos h cos hi, ~qrMachali of this paper is

greater than those of Ref. [10], and with the increasing of

so the difference between those increases. When so P 2

and U3ðh; hiÞ ¼ 1� cos h cos hi, ~qrMachali of this paper is

lesser than those of Ref. [10], and when so increases, the
difference increases.

When the other parameters are kept unchanged, the

results of the different single scattering phase functions

must have some inherent relations. For convenience,

two functions are defined as follows:
Table 1

Dimensionless reflected fluxes qr
Maruyama for linear-anisotropic medium

e1 ¼ e2 ¼ 1

so U1ðh; hiÞ ¼ 1þ 0:5 cos h cos hi

Ref. [5] Ref. [11] This paper

1 0.4055 0.40674 0.4043754a

0.4043260b

1.2 0.4465705b

1.5 0.4995269b

2 0.5678 0.56804 0.5681398a

0.5680838b

3 0.6599 0.6607097b

4 0.7195 0.7205519b

5 0.7614 0.76143 0.7624812a

0.7624371b

6 0.7923 0.7934004b

7 0.8162 0.8172225b

8 0.8351 0.8361188b

9 0.8505 0.8514739b

10 0.8633 0.86333 0.8641981b

a f ¼ 40.
b f ¼ 80.
W12 ¼
qr
Maruyama½U1ðh; hiÞ�

qr
Maruyama½U2ðh; hiÞ�

ð38Þ

W23 ¼
~qrMachali½U2ðh; hiÞ�
~qrMachali½U3ðh; hiÞ�

ð39Þ

The results of W12 obtained by Busbridge and Orchard

[5], Maruyama [11] and this paper are shown in Fig. 6.

When e1 ¼ 0:2, the results of W23 by Machali and

Madkour [10] and our model are listed in Table 3. When

e1 ¼ 1, e1 ¼ 0:7 and e1 ¼ 0:2, the results of W23 by

Machali and our model are shown in Fig. 7. It can be

seen that the results of this paper seem to be more

reasonable than those in the Ref. [10].

4.4. The results of nonlinear anisotropic scattering

Orchard [6] calculated the radiative transfer in a

purely nonlinear anisotropic scattering, gray slab, the

parameters were: x ¼ 1, NB ¼ 1, nm ¼ 1, Trf ¼ TS1 ¼
1000 K, TS2 ¼ 0, k ¼ 1� 10�14 Wm�1 K�1, EPS0 ¼
1� 10�9. The dimensionless reflected flux qr

Maruyama was

defined in Eqs. (36a) and (36b). Three kinds of non-

linear scattering phase functions are employed in this

paper:

U4 ¼ 1þ 0:5
3

2
ðcos hÞ2

�
� 1

2

	
3

2
ðcos hiÞ2

�
� 1

2

	
ð40Þ

U5 ¼ 1þ cos h cos hi

þ 0:5
3

2
ðcos hÞ2

�
� 1

2

	
3

2
ðcos hiÞ2

�
� 1

2

	
ð41Þ
with x ¼ 1, Trf ¼ TS1 ¼ 1000 K, TS2 ¼ 0, f ¼ 40–80, nm ¼ 1,

U2ðh; hiÞ ¼ 1þ cos h cos hi

Ref. [5] Ref. [11] This paper

0.3577 0.36160 0.3556584a

0.3552919b

0.3958174b

0.4476231b

0.5154 0.51617 0.5168115a

0.5164068b

0.6102 0.6125566b

0.6738 0.6767364b

0.7195 0.71951 0.7229886a

0.7226612b

0.7540 0.7571575b

0.7810 0.7840210b

0.8026 0.8055330b

0.8203 0.8231478b

0.8351 0.83512 0.8378365b



Table 2

Comparison of the dimensionless radiative heat fluxes ~qrMachali for slabs qd
1 ¼ 0, qd

2 ¼ 0:2, qs
2 ¼ 0, e2 ¼ 0:8, Pref ¼ 1, x ¼ 1, nm ¼ 1,

f ¼ 100

e1 so ¼ 0:01 so ¼ 0:1 so ¼ 0:5 so ¼ 1 so ¼ 2 so ¼ 5

(a) U2 (h; hi)¼ 1þ coshcoshi
0.2 Ref. [10] 0.44580 0.44055 0.42084 0.39918 0.36008 0.27062

This paper 0.445854a 0.440978b 0.422416 0.402770 0.369657 0.297461

0.7 Ref. [10] 0.39720 0.38335 0.33683 0.29299 0.22909 0.13191

This paper 0.397343a 0.384319b 0.339727 0.299160 0.242866 0.155902

1.0 Ref. [10] 0.37282 0.35586 0.30168 0.25370 0.18888 0.10124

This paper 0.372997a 0.356935b 0.304539 0.259759 0.201875 0.121452

(b) U3 (h; hi)¼ 1� coshcoshi
0.2 Ref. [10] 0.44538 0.43649 0.40443 0.37421 0.33032 0.25047

This paper 0.445319a 0.436010b 0.402241 0.369110 0.318571 0.226868

0.7 Ref. [10] 0.39602 0.37277 0.30234 0.25005 0.19105 0.11614

This paper 0.395867a 0.371612b 0.298426 0.242584 0.177949 0.099421

1.0 Ref. [10] 0.37134 0.34295 0.26315 0.20903 0.15274 0.08791

This paper 0.371146a 0.341579b 0.259136 0.201901 0.141122 0.074488

a f ¼ 1000 (for so ¼ 0:01, NM ¼ 10).
b f ¼ 200 (for so ¼ 0:1, NM ¼ 20).

1 10
0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Busbridge

Maruyama

this paper

oτ

Ψ12

Fig. 6. W12 of Busbridge and Orchard [5], Maruyama [11], and

this paper (f ¼ 80).
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U6 ¼ 1þ 1:5 cos h cos hi

þ 0:5
3

2
ðcos hÞ2

�
� 1

2

	
3

2
ðcos hiÞ2

�
� 1

2

	
ð42Þ

With different optical thickness and phase function,

qr
Maruyama is shown in Table 4. Our results are satisfied

with those of Orchard [6]. Define two parameters as

follows:
W54 ¼
qr
Maruyama½U5ðh; hiÞ�

qr
Maruyama½U4ðh; hiÞ�

ð43Þ

W64 ¼
qr
Maruyama½U6ðh; hiÞ�

qr
Maruyama½U4ðh; hiÞ�

ð44Þ

The results of W54, W64 are shown in Table 5 and Fig. 8.

4.5. The CPU time and precision analyse

The main CPU time of our model is taken to simulate

the energy redistribution after scattering. Taking Eq.

(26) as an example:

½ViVj��ðnþ1Þth
a ¼ ½ViVj��ntha þ

XNMþ1

lnþ1¼2

ViVlnþ1

� ��f
H Vlnþ1

Vln
� ��fth

þ ViVlnþ1

� ��b
H Vlnþ1

Vln
� ��bti

xng

The calculation is started from the inside to the outside,

which is programmed as a subroutine and the calcula-

tions performed in pairs (only three loops). So one more

scattering will only call two more subroutines. Our ray

tracing code runs on PC PIII/1G, and the simulating

parameters are: x ¼ 1, f ¼ 80, EPS0 ¼ 1� 10�9. The

total CPU time, which is strongly relative with NUM

and the numbers of scattering, is shown in Table 6. The

amount of computation for nth scattering is about

n NM3:7 þ 4NM2:7ð Þ.

4.6. The effect of the number of node on result

The Dimensionless reflected fluxes for different

f ¼ NM=so are shown in Table 7 (also see Tables 1 and

2). It shows that the maximal relative difference between



Table 3

Comparison of results W23 when e1 ¼ 0:2 (qd
1 ¼ 0, qs

1 ¼ 0, qd
2 ¼ 0:2, qs

2 ¼ 0, e2 ¼ 0:2, f ¼ 100)

so ¼ 0:01 so ¼ 0:1 so ¼ 0:5 so ¼ 1 so ¼ 2 so ¼ 5

Ref. [10] ~qrMachali½U2ðh; hiÞ� 0.44580 0.44055 0.42084 0.39918 0.36008 0.27062

~qrMachali½U3ðh; hiÞ� 0.44538 0.43649 0.40443 0.37421 0.33032 0.25047

W23 1.00094 1.00930 1.04058 1.06673 1.09009 1.08045

This paper ~qrMachali½U2ðh; hiÞ� 0.445854a 0.440978b 0.422416 0.402770 0.369657 0.297461

~qrMachali½U3ðh; hiÞ� 0.445319a 0.436010b 0.402241 0.369110 0.318571 0.226868

W23 1.00120 1.01139 1.05016 1.09119 1.16036 1.31116

a f ¼ 1000 (for so ¼ 0:01, NM ¼ 10).
b f ¼ 200 (for so ¼ 0:1, NM ¼ 20).

o

0.01 0.10 1.00 10.00
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Machali 1 = 0.2

1 = 0.2

1 = 0.7

1 = 0.7

1 = 1

1 = 1

this paper

Machali

this paper

Machali

this paper

τ

Ψ23

ε

ε

ε

ε

ε

ε

Fig. 7. W23 of Machali and Madkour [10] and this paper.

Table 4

Dimensionless reflected fluxes qr
Maruyama for nonlinear-anisotropic m

e1 ¼ e2 ¼ 1

so U4 U5

Ref. [6] This paper Ref. [6]

1 0.4468 0.4424437 0.3580

0.4424567a

2 0.6101 0.6052842 0.5157

0.6052956a

3 0.6985 0.6939824 0.6104

4 0.7541 0.7500593 0.6739

5 0.7924 0.7887545 0.7197

6 0.8204 0.8170720 0.7541

7 0.8417 0.8386944 0.7810

8 0.8585 0.8557454 0.8026

9 0.8721 0.8695361 0.8204

10 0.8833 0.8809202 0.8352

a f ¼ 160.

H.-P. Tan et al. / International Journal of Heat and Mass Transfer 47 (2004) 4045–4059 4055
the result of f ¼ 50 and that of f ¼ 60 is only about

0.0276% (U2ðh; hiÞ; so ¼ 1), and with the increase of so,
the relative error decrease. So except the comparing

calculation with Refs. [5,6,10,11], we take f ¼ 80 or 100,

in all other calculation, we let f ¼ 50.
5. Transient heat transfer for specified boundary temper-

ature

Consider the semi-transparent gray slab with opaque

boundaries and hold an initial condition of a uniform

temperature distribution (T0). One boundary is suddenly

fixed at the temperature TS2 and the others are kept at

temperature T0 by setting h1 ¼ h2 ¼ 1 ¼ 1� 1025

Wm�2 K�1, up to the steady-state, and T0 ¼ TS1 ¼
Tg1 ¼ 750 K, Trf ¼ TS2 ¼ Tg2 ¼ 1500 K. The other para-

meters are taken as L ¼ 0:1 m, NB ¼ 1, nm ¼ 1, j ¼ 50

or 100, q1 ¼ q2 ¼ 0 or 0.9, x ¼ 0:5 or 0.9, Np ¼ 0:005,
H1 ¼ H2 ¼ 5:2261� 1022. The following isotropic scat-

tering and linear anisotropic scattering phase functions

are considered.
edium at x ¼ 1 Trf ¼ TS1 ¼ 1000 K, TS2 ¼ 0, f ¼ 80, nm ¼ 1,

U6

This paper Ref. [6] This paper

0.3513212 0.3020 0.2939539

0.5113866 0.4490 0.4458478

0.6075034 0.5437 0.5433448

0.6719365 0.6104 0.6115764

0.7181824 0.6601 0.6620517

0.7529978 0.6985 0.7009137

0.7801561 0.7292 0.7317588

0.8019337 0.7541 0.7568364

0.8197856 0.7749 0.7776258

0.8346855 0.7924 0.7951404



Table 5

Comparison of results W54 and W64 (f ¼ 80)

so W54 ¼
qr
Maruyama

½U5ðh;hiÞ�
qr
Maruyama

½U4ðh;hiÞ�
W64 ¼

qr
Maruyama

½U6ðh;hiÞ�
qr
Maruyama

½U4ðh;hiÞ�

Ref. [6] This paper Ref. [6] This paper

1 0.80125 0.79405 0.67592 0.65791

2 0.84527 0.84487 0.73594 0.73659

3 0.87387 0.87539 0.77838 0.78294

4 0.89365 0.89584 0.80944 0.81537

5 0.90825 0.91053 0.83304 0.83936

6 0.91919 0.92158 0.85141 0.85784

7 0.92788 0.93020 0.86634 0.87250

8 0.93489 0.93712 0.87839 0.88442

9 0.94072 0.94279 0.88854 0.89430

10 0.94555 0.94752 0.89709 0.90262

Ψ54,Ψ64

1 10
0.65

0.70

0.75

0.80

0.85

0.90

0.95

Orchard

This paper

Orchard

This paper

Ψ54

Ψ54

Ψ64

Ψ64

τo

Fig. 8. W54, W64 of Orchard [6] and this paper.
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U0ðh; hiÞ ¼ 1

U2ðh; hiÞ ¼ 1þ cos h cos hi
U3ðh; hiÞ ¼ 1� cos h cos hi ð45Þ

Let DH be the difference of dimensionless tempera-

ture, and

DH20 ¼ HðU2Þ �HðU0Þ ¼
T ðU2Þ � T ðU0Þ

Trf � T0
ð46aÞ

DH30 ¼ HðU3Þ �HðU0Þ ¼
T ðU3Þ � T ðU0Þ

Trf � T0
ð46bÞ

Transient temperatures are shown in Figs. 9–12 for

the case Dt� ¼ 0:001, EPS0 ¼ 1� 10�9, f ¼ 50.

When so ¼ 5 and e1 ¼ e2 ¼ 1, the difference of tran-

sient dimensionless temperature distributions DH20 and
Table 6

The CPU time

so U1ðh; hiÞ ¼ 1þ 0:5 cos h cos hi

nth scattering NM CPU time

2 81 160 179 s

3 128 240 21 min 25

4 185 320 92 min

5 251 400 276 min

Table 7

Dimensionless reflected fluxes qr
Maruyama for different f ¼ NM=so

f ¼ NM=so U1ðh; hiÞ ¼ 1þ 0:5 cos h cos hi

so ¼ 1 so ¼ 3

10 0.4041492 0.6606801

20 0.4043971 0.6608098

40 0.4043754 0.6607627

50 0.4043588 0.6607439

60 0.4043454 0.6607296

80 0.4043260 0.6607097

100 0.4043129 0.6606966

150 0.4042937 0.6606780
DH30, which show symmetry character, are shown in

Fig. 9. The extremums of them are shown in Table 8.

For so ¼ 10 and e1 ¼ e2 ¼ 1, the difference of transient

dimensionless temperature distributions DH20 and DH30

are shown in Fig. 10. All results indicate that with the

increasing of the optical thickness, when t� ¼ 0:8, the
difference of transient temperature distributions in-

creases, when t� ¼ t�s , the difference of temperature dis-

tributions decrease.

In absorbing, emitting and scattering simulation,

when the reflectivity of the surface is not zero, radia-

tive energy undergoes multi-scattering by medium and
U2ðh; hiÞ ¼ 1þ cos h cos hi

nth scattering NM CPU time

76 160 170 s

s 118 240 19 min 43 s

167 320 82 min 7 s

224 400 246 min

U2ðh; hiÞ ¼ 1þ cos h cos hi

so ¼ 1 so ¼ 3

0.3571997 0.6146590

0.3562913 0.6136236

0.3556584 0.6129429

0.3555160 0.6127923

0.3554180 0.6126890

0.3552919 0.6125566

0.3552142 0.6124753

0.3551083 0.6123648



Fig. 9. Relative temperature difference distributions between

anisotropic scattering and isotropic scattering media for so ¼ 5,

e1 ¼ e2 ¼ 1, x ¼ 0:9.

Fig. 10. Relative temperature difference distributions between

anisotropic scattering and isotropic scattering media for

so ¼ 10, e1 ¼ e2 ¼ 0:1, x ¼ 0:9.

Fig. 11. Relative temperature difference distributions between

anisotropic scattering and isotropic scattering media for so ¼ 5,

e1 ¼ e2 ¼ 0:1, x ¼ 0:9.

Fig. 12. Relative temperature difference distributions between

anisotropic scattering and isotropic scattering media for

so ¼ 10, e1 ¼ e2 ¼ 0:1, x ¼ 0:9.

Table 8

The extremum of temperature difference and the extreme point

so t� e1 ¼ e2 ¼ 1 e1 ¼ e2 ¼ 0:1

DH20 T ðU2Þ � T ðU0Þ [K] DH30 DH20 DH30

5 0:8 0.01965 14.74 )0.01633 )0.00766 0.00611

t�s 0.02236 16.77 )0.01512 0.02073 )0.01795
10 0:8 0.03883 29.12 )0.03067 )0.01264 0.00913

t�s 0.02052 15.39 )0.01391 0.03197 )0.02485
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multi-reflecting by the surface before being absorbed by

the medium and the surfaces. The results in Figs. 9–12

indicate that, the difference among the results for three

kinds of phase functions decreases with an increase of

reflectivity. It is explained as that for opaque boundary

surfaces, an increase of reflectivity predicates a decrease

of emissivity, and with the decrease of emissivity, the

contribution of surface radiation to temperature fields

inside the media decreases, which results in the decrease

of the temperature difference between the anisotropic

scattering and the isotropic scattering media.
6. Conclusions

A model was developed by using the ray tracing

method in combination with the nodal analysis for

solving the coupled radiative and conductive heat

transfer in an anisotropic scattering medium. On the

basis of the two sub-processes from the radiative

transfer process, the RTCs for a one-dimensional

anisotropic scattering nongray slab with two opaque,

specular reflective boundaries were deduced. The tem-

perature distributions and radiative fluxes were obtained

for the boundary conditions of external radiation and

convection.

Numerical analysis in the present study leads to the

following summaries:

(1) There are many papers about the anisotropic scat-

tering, but most of them lacked some calculating

parameters for comparison. The present results were

compared with those from the exact solution [5],

REM2 [11], and projection method [10]. It is shown

that some differences exist between the present re-

sults and those of Machali. When so 6 1, the results

of this paper agree very well with those of [10]. When

so > 1 and Uðl; liÞ ¼ 1þ lli, the results of this pa-

per are greater than those of [10]. When so > 1 and

Uðl; liÞ ¼ 1� lli, the results of this paper are lesser

than those of Machali and Madkour, and difference

between them increases with the increase of so. So
we think that the results of [10] have some error.

(2) It is found that the ratio of two-dimensionless heat

fluxes with two different scatting phase function is

a monotonous function of optical thickness, for in-

stance W12, W23, W54 and W64 defined in Eqs. (38),

(39), (43) and (44), respectively (see Figs. 6–8). It

can be used to verify the calculating result.

(3) Under the condition considered in this paper, the

influence of anisotropic scattering on temperature

field is small, the temperature differences of forward

and backward scattering are about 20 K comparing

with the results of isotropic scattering, but the effects

of anisotropic scattering on heat flux are larger than

those on temperature field.
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